An Effective Routing Algorithm with Chaotic Neurodynamics for Optimizing Communication Networks
نویسندگان
چکیده
In communication networks, the most significant impediment to reliable communication between end users is the congestion of packets. Many approaches have been tried to resolve the congestion problem. In this regard, we have proposed a routing algorithm with chaotic neurodynamics. By using a refractory effect, which is the most important effect of chaotic neurons, the routing algorithm shows better performance than the shortest path approach. In addition, we have further improved the routing algorithm by combining information of the shortest paths and the waiting times at adjacent nodes. We confirm that the routing algorithm using chaotic neurodynamics is the most effective approach to alleviate congestion of packets in a communication network. In previous works, the chaotic routing algorithm has been evaluated for ideal communication networks in which every node has the same transmission capability for routing the packets and the same buffer size for storing the packets. To check whether the chaotic routing algorithm is practically applicable, it is important to evaluate its performance under realistic conditions. In 2007, M. Hu et al. proposed a practicable communication network in which the largest storage capacity and processing capability were introduced. Newman et al. proposed scale-free networks with community structures; these networks effectively extract communities from the real complex network using the shortest path betweenness. In addition, the scale-free networks have common structures in real complex networks such as collaboration networks or communication networks. Thus, in this paper, we evaluate the chaotic routing algorithm for communication networks to which realistic conditions are introduced. Owing to the effective alleviation of packets, the proposed routing algorithm shows a higher arrival rate of packets than the conventional routing algorithms. Further, we confirmed that the chaotic routing algorithm can possibly be applied to real communication networks.
منابع مشابه
An Adaptive LEACH-based Clustering Algorithm for Wireless Sensor Networks
LEACH is the most popular clastering algorithm in Wireless Sensor Networks (WSNs). However, it has two main drawbacks, including random selection of cluster heads, and direct communication of cluster heads with the sink. This paper aims to introduce a new centralized cluster-based routing protocol named LEACH-AEC (LEACH with Adaptive Energy Consumption), which guarantees to generate balanced cl...
متن کاملSecuring AODV routing protocol against the black hole attack using Firefly algorithm
Mobile ad hoc networks are networks composed of wireless devices to create a network with the ability for self-organization. These networks are designed as a new generation of computer networks to satisfy some specific requirements and with features different from wired networks. These networks have no fixed communication infrastructure and for communication with other nodes the intermediate no...
متن کاملMLCA: A Multi-Level Clustering Algorithm for Routing in Wireless Sensor Networks
Energy constraint is the biggest challenge in wireless sensor networks because the power supply of each sensor node is a battery that is not rechargeable or replaceable due to the applications of these networks. One of the successful methods for saving energy in these networks is clustering. It has caused that cluster-based routing algorithms are successful routing algorithm for these networks....
متن کاملImproving Quality of Service Routing in Mobile Ad Hoc Networks Using OLSR
Mobile ad hoc networks (MANET) are constructed by mobile nodes without access point. Since MANET has certain constraints, including power shortages, an unstable wireless environment and node mobility, more power-efficient and reliable routing protocols are needed. The OLSR protocol is an optimization of the classical link state algorithm. OLSR introduces an interesting concept, the multipoint r...
متن کاملA Priority-based Routing Algorithm for Underwater Wireless Sensor Networks (UWSNs)
Advances in low-power electronics design and wireless communication have enabled the development of low cost, low power micro-sensor nodes. These sensor nodes are capable of sensing, processing and forwarding which have many applications such as underwater networks. In underwater wireless sensor networks (UWSNs) applications, sensors which are placed in underwater environments and predicted ena...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013